Lecture

Signal and Image Processing Modules


SciPy includes powerful modules for signal and image processing, enabling you to:

  • Filter time-series or spatial data
  • Perform frequency analysis
  • Apply transformations and basic image manipulation

The two main modules are:

  • scipy.signal – Works with 1D and 2D signals (e.g., audio, time series, images)
  • scipy.ndimage – Offers advanced image processing functions

These tools are widely used in engineering, data analysis, and scientific research.


Example 1: Low-Pass Filtering

Butterworth Low-Pass Filter
import numpy as np import matplotlib.pyplot as plt from scipy import signal, misc # Sampling parameters fs = 500.0 # Hz t = np.arange(0, 1.0, 1/fs) # Create a noisy signal sig = np.sin(2*np.pi*5*t) + 0.5*np.sin(2*np.pi*50*t) # Design low-pass filter (cutoff 10 Hz) b, a = signal.butter(N=4, Wn=10/(fs/2), btype='low') # Apply filter filtered = signal.filtfilt(b, a, sig) # Plot plt.plot(t, sig, label="Original", alpha=0.5) plt.plot(t, filtered, label="Filtered", linewidth=2) plt.xlabel("Time [s]") plt.ylabel("Amplitude") plt.title("Low-Pass Butterworth Filter") plt.legend() plt.show()

signal.butter() designs the filter, and signal.filtfilt() applies it without introducing a phase shift.


Example 2: Spectrogram

Spectrogram
f, t_spec, Sxx = signal.spectrogram(sig, fs) plt.pcolormesh(t_spec, f, Sxx, shading='gouraud') plt.ylabel("Frequency [Hz]") plt.xlabel("Time [s]") plt.title("Spectrogram") plt.show()

A spectrogram shows how the frequency content of a signal changes over time — useful for audio analysis and vibration monitoring.


Example 3: Image Blurring

Gaussian Blur with Convolution
# Load sample image face = misc.face(gray=True) # Create Gaussian blur kernel kernel_size = 15 sigma = 3.0 x = np.linspace(-sigma, sigma, kernel_size) gauss_kernel_1d = np.exp(-x**2 / (2 * sigma**2)) gauss_kernel_1d /= gauss_kernel_1d.sum() gauss_kernel_2d = np.outer(gauss_kernel_1d, gauss_kernel_1d) # Apply convolution blurred_face = signal.convolve2d(face, gauss_kernel_2d, mode='same', boundary='symm') # Plot plt.subplot(1, 2, 1) plt.imshow(face, cmap='gray') plt.title("Original") plt.axis('off') plt.subplot(1, 2, 2) plt.imshow(blurred_face, cmap='gray') plt.title("Blurred") plt.axis('off') plt.show()

signal.convolve2d() applies a 2D convolution — in this case, using a Gaussian kernel to smooth the image.


What’s Next?

In the next lesson, we’ll conclude Chapter 3 with the Final Quiz on SciPy Fundamentals to test your knowledge from all previous lessons.

Quiz
0 / 1

SciPy's signal processing module can be used to design and apply a Butterworth low-pass filter to a time-series signal without introducing a phase shift.

True
False

Lecture

AI Tutor

Design

Upload

Notes

Favorites

Help